\qquad Pd: \qquad
\qquad /64.5 pts 2 pts ec printing
\#1 Motion Standards: The velocity of an object is the rate of change of its \qquad .
a. Position is defined in relation to some choice of a standard \qquad point \& a set of reference
\qquad .
b. \qquad speed is the total distance traveled divided by the total time elapsed \& that the speed of an object along the path traveled can \qquad -.
c. Solve problems involving distance, time, \& average speed.
d. The velocity of an object must be described by specifying both the \qquad \& the \qquad of the object.
e. Changes in \qquad may be due to changes in speed, direction, or both.
f. Interpret graphs of position versus time \& graphs of speed versus time for motion in a single direction.

Motion Vocabulary: Write the correct term letter next to the definition 1. The location of an object compared to a reference point
a. Acceleration
2. Speed in a given direction.
b. Force
3. the overall rate at which an object moves. Calculated by dividing distance by total time
4. The rate at which velocity changes in a given period of time.
c. Position
d. Speed
5. an object's change in position over time when compared with a reference point
e. Velocity
6. A push or pull.

The rate at which an object moves.
8. The tendency of an object to resist change in motion.
9. A "perpendicular" force that acts on the surface of a book resting on a table.
10. The metric unit for force.
11. acceleration in which velocity decreases
12. an object that appears to stay in place in relation to an object being observed for motion
13. A measure of the gravitational force on an object.
14. Mass x Velocity

Motion Equations: For each problem, state whether you would be finding the speed, average speed, velocity, or acceleration of the object. Answers will be used more than once.

A bear walks 5 km in 30 min ., then 15 km in 90 min . A plane traveled $3,000 \mathrm{mi}$ from NYC to CA in 5 hrs . \qquad A truck travels 75 mi north in 2.5 hr A car traveled 543 km in 6 hours. A dog runs 3800 meters in 2 min . A car goes from rest to 60 mph in 9 sec .

Solving Speed Problems

Example: What is the speed of a cheetah that travels 112.0 meters in 4.0 seconds?		
Looking for: Speed of cheetah	Solution	$\frac{1}{2}$ pt each
$\begin{array}{ll}\text { Given: } & \text { Distance }=112.0 \text { meters } \\ & \text { Time }=4.0 \text { seconds }\end{array}$	The speed of the cheetah is 28 meters per second.	_ $/ 3.5$

1. A bicyclist travels 60.0 km in 3.5 hours. What is the cyclist's average speed?	2. What is the average speed of a car that traveled 300.0 miles in 5.5 hours?
3. How much time would it take for the sound of thunder to travel 1,500 meters if sound travels at a speed of $330 \mathrm{~m} / \mathrm{s}$?	4. A snail can move approximately

5. Suppose you are walking home after school. The distance from school to your home is five km. On foot, you can get home in 25 min. However, if you rode a bike, you could get home in 10 minutes. SHOW YOUR WORK TO GET CREDIT !
What is your average speed while walking? |What is your average speed while bicycling?

Solving Velocity Problems

Remember: The velocity of an object is determined by measuring both the speed \& direction. If the speed of an object changes, then its velocity also changes. If the direction in which an object is traveling changes, then its velocity changes.
A change in either speed, direction, or both causes a change in velocity.

Use $v=d / t$ to solve velocity

The velocity of an object in motion is equal to the distance it travels per unit of time in a given direction.
Example 1: What is the velocity of a car that travels 100.0 meters, northeast in 4.65 seconds?
Looking for: Velocity of the car.

Given:

Distance $=100.0$ meters Time $=4.65$ seconds

1. An airplane flies 525 kilometers north in 1.25 hours. What is the airplane's velocity?
2. A family drives 881 miles from Houston, Texas to Santa Fe, New Mexico for vacation. How long will it take the family to reach their destination if they travel at a velocity of 55.0 miles per hour, northwest?
3. A shopping cart is pushed 15.6 meters west across a parking lot in 5.2 seconds. What is the velocity of the shopping cart?
4. \qquad Point B =

1 pt each
\qquad
$/ 5 \mathrm{pts}$
3.A Girl Scout troop hiked 5.8 kilometers southeast in 1.5 hours. What was the troop's velocity?
2. A soccer player kicks a ball 6.5 meters. How much time is needed for the ball to travel this distance if its velocity is 22 meters per second, south?

$$
\text { velocity }=\frac{d}{t}=\frac{100.0 \mathrm{~m}}{4.65 \mathrm{~s}}=\frac{21.5 \mathrm{~m}}{\mathrm{~s}}
$$

The velocity of the car is 21.5 meters per second northeast.
Solution

Speed - Time Graphs

4. How far did the vehicle travel during the first 30 seconds?

5. How far did the vehicle travel during the time interval from 4 hours to 8 hours?
6. Show the formulas for acceleration
7. Show the formula for speed

Motion Questions:

1. An athlete can run 9 kilometers in 1 hour. If the athlete runs at that same average speed for 30 minutes, how far will the athlete travel?
a. 18 km
b. 9 km
c. 4.5 km
d. 3.3 km
2. How much time is required for a bicycle to travel a distance of 100 m at an average speed of $2 \mathrm{~m} / \mathrm{s}$?
a. 0.02 s
b. 50 s
c. 100 s
d. 200 s
3. Which of the following represents the velocity of a moving object?
a. 40
b. 40 m north
C. $40 \mathrm{~m} / \mathrm{s}$
d. $40 \mathrm{~m} / \mathrm{s}$ north
4. Which characteristic of motion could change without changing the velocity of an object?
a. the speed b. the position
c. the direction
d. the
acceleration
5. The graph below shows how the position of an object changes over time.

6. What is the speed of the object during the time interval from 4 seconds to 10 seconds?
a. $2 \mathrm{~m} / \mathrm{s}$
b. $3 \mathrm{~m} / \mathrm{s}$
C. $8 \mathrm{~m} / \mathrm{s}$
d. $6 \mathrm{~m} / \mathrm{s}$

The graph below shows the speed of a vehicle over time.

7.How far did the vehicle travel during the first two seconds?
a. 0.2 m
b. 5 m
c. 10 m
d. 20 m
8. What term or phrase describes a point that appears to stay in place and can be used to detect the motion of an object?
a. a reference point
b. a compass
c. a ruler
d. a beacon
9. What is the difference between speed and velocity?
a. Velocity is expressed in m / s. Speed is expressed in $\mathrm{m} / \mathrm{s}^{2}$.
b. Speed involves a constant rate of acceleration, and velocity does not.
c. Speed is measured by time and distance, but velocity also includes direction.
d. Velocity involves moving in a direction in a straight line, and speed does not.

1 pts each
120 pts

10.The graph above shows a person walking. Which of the following sentences best describes the walker's speed?
A She travels an average of $10 \mathrm{~m} / \mathrm{s}$.
B She travels an average of $4 \mathrm{~m} / \mathrm{s}$.
C Her rate of speed decreases after 5 seconds
D Her rate of speed increases after 5 seconds
11. The best way to describe the rate of motion of an object that changes speed several times is to calculate the object's
A. average speed
B. constant speed
C. instantaneous speed
D. variable speed
12. Which of the following is a force?
A. inertia
B. friction
C. velocity
D. acceleration
13. The unit for \qquad is $\mathrm{m} / \mathrm{s}^{2}$.
A. weight B. acceleration C. inertia D. velocity
14. Which of the following is not used in calculating acceleration?
A. initial velocity
B. average speed
C. time interval
D. final velocity
15. A body accelerates if it \qquad .
A. speeds up
B. slows down
C. changes direction
D. all of these
16. The gravitational force between two objects depends on their \qquad .
A. speed
B. masses
C. velocities
D. shapes
17. \qquad acts only between surfaces that are in contact.
A. Inertia
B. Friction
C. Gravity
D. A net force
18. In a head-on car crash, passengers not wearing seat belts continue to move forward with the same \qquad that the car had prior to impact.
A. momentum
B. force
C. potential energy
D. speed
19. An object of large mass has \qquad than an object of small mass.
A. less inertia
B. more inertia
C. less weight
D. greater acceleration
20. A constant velocity means acceleration is \qquad .
a. positive
b. negative
c. increasing
d. zero

Speed \& Velocity		each problem	
Problem	Distance	Time	Speed
Example: A bicyclist travels 60.0 kilometers in 4 hours. What is the cyclist's average speed?	60 km	4 hours	$\begin{aligned} & \mathrm{S}=60 \mathrm{~km} / 4 \mathrm{~h} \\ & \mathbf{S}=\mathbf{1 5} \mathbf{k m} / \mathbf{h} \end{aligned}$
1. What is the speed of a car that traveled 300.0 miles in 5.5 hrs?			
2. How much time would it take for the sound of thunder to travel 1,500 meters if sound travels at a speed of $330 \mathrm{~m} / \mathrm{s}$?			
3. Jen drives 20 miles southwest to her favorite mall. What is her velocity if she arrives at the mall in 8 minutes?			
4. A person in a kayak paddles down river at an average speed of $10 \mathrm{~km} / \mathrm{h}$. After 3.25 hours, how far has she traveled?			
5. How much time is required for a bicycle to travel a distance of 100 m at a speed of $2 \mathrm{~m} / \mathrm{s}$?			
Average Speed $=$			
Problem	Distance	Time	Average Speed
Example: Joe drives 450 meters in 4 minutes, then 150 meters in 2 minutes. What is Joe's average speed?	$450+150=600 \mathrm{~m}$	$4+2=6 \mathrm{~min}$	$\begin{aligned} & S=600 \mathrm{~m} / 6 \mathrm{~min} \\ & S=100 \mathrm{~m} / \mathrm{min} \end{aligned}$
6. A worm covers 5 cm in 10 seconds, then 25 cm in 155 seconds. What is its average speed?			
7. Rita runs 1 mile in 5.4 minutes, then 2 miles in 12 minutes. What is her average speed?			
8. A bird flies 80 km in 2 hours, then 120 km in 3.8 hours. What is its average speed?			

Acceleration =

Problem	Final Velocity	Initial Velocity	Time	Acceleration
Example: After traveling for 5.0 seconds, a runner reaches a speed of $10 \mathrm{~m} / \mathrm{s}$. What is the runner's acceleration?	$10 \mathrm{~m} / \mathrm{s}$	$0 \mathrm{~m} / \mathrm{s}$	5 s	$\begin{gathered} \mathrm{A}=\frac{10-0 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~s}} \\ \mathrm{~A}=\mathbf{2 \mathrm { m } / \mathrm { s } ^ { 2 }} \end{gathered}$
9. A skater increases her velocity from $2.0 \mathrm{~m} / \mathrm{s}$ to $10.0 \mathrm{~m} / \mathrm{s}$ in 3.0 seconds. What is the skater's acceleration?				
10. A parachute on a racing dragster opens \& changes the speed of the car from $85 \mathrm{~m} / \mathrm{s}$ to $45 \mathrm{~m} / \mathrm{s}$ in a period of 4.5 seconds. What is the acceleration?				
11. A car starting from rest accelerates at a rate of $8.0 \mathrm{~m} / \mathrm{s}$. What is its final speed at the end of 4.0 seconds?				

